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ABSTRACT

A spatial stability analysis is performed for the boundary layer over a non-
isotropic compliant surface. A simple mechanical model is used for the surface.

Surface properties which may lead to boundary layer stabilization are determined.

A spectral approximation is used to obtain a solution of the equations gov-
erning the normal velocity component of a small disturbance. The streamwise
wavenumber becomes the eigenvalue in the nonlinear eigenvalue problem formed.
The resulting solution spectrum contains values which indicate the growth rates
of the Tollmien-Schlichting and flow-induced surface instabilities. It is shown that
the Tollmien-Schlichting instability is most sensitive to changes in the surface prop-
erties. Previously it has been suggested that an attempt to stabilize one class of
instability tends to destabilize the other class. It is shown that varying the surface
properties can reduce the growth rate of the Tollmien-Schlichting instability but

has little effect on the flow-induced surface instability.

The surface properties are “optimized” using a minimization algorithm. It is
found that appropriate surface properties lead to a decrease in the growth rates
of the flow instability. Although this approach may be used it is more expensive

computationally than a simple property variation approach.

The simple mechanical model for the compliant surface may be represented by
an elastic plate over spring-rigid supports. The functional relationship between the
flexural rigidity, thickness. and modulus of elasticity of the plate provides a means
to vary the properties and determine the effect on the instabilities. It is found that
by keeping the flexural rigidity essentially constant and simultaneously increasing
the plate thickness and decreasing the modulus of elasticity a decrease in the growth

rate of the Tollmien-Schlichting instability is obtained. Alternatively, by keeping
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Cartesian coordinate system

time variable

streamwise velocity in the boundary layer (Blasius solution)

transverse velocity in the boundary layer
spanwise velocity in the boundary layer
pressure in the boundary layer
streamwise velocity perturbation
transverse velocity perturbation
spanwise velocity perturbation

pressure perturbation

instantaneous streamwise velocity
instantaneous transverse velocity
instantaneous spanwise velocity
instantaneous pressure

displacement thickness

streamfunction of disturbance
amplitude of disturbance

wavelength of disturbance
wavenumber(eigenvalue): = 2w /A
frequency of disturbance

maximum freestream velocity
freestream density

nondimensional quantity
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N (") nondimensional disturbance '%
o

. r / '.\}
N R Reynolds number: = U6 /v A

. . . . . ®
a(y),b(y) nonconstant coefficients of the ordinary differential equation (2.9) Lo

B A

/ . . . . AN

~ v kinematic viscosity S

) .:i
: 6 angle between horizontal and rigid-member of surface 2

p) ¢ streamwise surface element displacement A
b .
. n cross-stream surface element displacement o
0 . ;:_
! 60 angular displacement of surface element Y

. [

, £ length of rigid-member support o
N =
N Pm plate density :'_:.:
X o
N b plate thickness o
" B flexural rigidity of plate Y
~ A
N E modulus of elasticity of plate o
R .l-'J-
" K spring stiffness e

o' viscous normal stress perturbation on plate surface "
- .\..\
* . . - ‘o)
. T/ viscous shear stress perturbation on plate surface \';\
¢ A YR

- w*,
. . N
. ~ defined variable: = ¢ 66 vl
) ®
Y C, nondimensional coefficients of compliant wall properties: i=M,B.K,T e
X A
: u viscosity el
: R

[ ]

X Chapter 3: o
u. !."ﬁ
. z transformed computational domain: € {—1, + 1] e
- "..'

Y. L constant used in domain transformation: z = (y - L) (y ~ L) o

®
- e — - 2 >
. m metric: m(2) = dz/dy = (1 — 2)*/2L 3

K. 3 dummy variable: £ = mv’ 25

¥ . [ --
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Chapter 5:

constants of integration: 1=0,1,2,3
coefficient matrices: 1=0,1,2,3,4,5
lambda matrix: i=3 or §

right eigenvector

defines vector values

defines matrix values

constant: = w/0.35

transformed eigenvalue: = 1/(@ — s)
right solvent in factorization
G-polynomials in Traub iteration
coefficient matrices of G ,-polynomial: i=1,2,3,4,5,6
model problem function

stiffness parameter in model problem: ~ R~!/2

boundary parameter in model problem
left eigenvector

complex conjugate transpose
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X INTRODUCTION e,
s
v N
oo
This thesis is devoted to identifying non-isotropic compliant surface properties >
which produce a delay in the transition to turbulence for hydrodynamic applications. ~
) "l
j This involves using a simple mechanical model for the surface. A disturbance is ‘g::*
. . . . . e
introduced in the boundary layer in the form of a travelling wave. The streamwise ol
. wavenumber of the disturbance becomes the eigenvalue for the nonlinear eigenvalue .'.-‘\-.,
: “a
) problem formed. A measure of the instability growth rates is found in the solution :'.:
4 S
o
spectrum. While the surface properties are varied the least damped wavenumber W
is tracked to indicate the effect felt by the instabilities. It may be shown that a ::i';:-
proper combination of surface properties can lead to boundary layer stabilization. -'._'
The transition of boundary layers from laminar to turbulent is due to insta- C;’
g bilities that develop in the boundary layer. Fer low Reynolds number flows, the -‘;:;
73
viscosity is dominant and provides a means to damp-out the instability. As the a%;
g
Reynolds number increases the natural damping becomes insufficient to maintain ;:'*
laminar flow. Waves buildup and eventually turn turbulent. With the onset of :::::.
RS
turbulence the boundary layer thickens and drag and noise levels increase. In or- \"\
der to delay this effect it is desirable to introduce a passive, “artificial” damping ;
mechanism. This may be accomplished by modifying the surface in contact with '._‘\
) Ao
N
S the boundary layer. ;\': X
‘ ;'\n.
A major incentive for using a surface other than a rigid wall was brought about ®
- o g
. by experiments performed by Kramer {1,2| in 1960. By using a rubber coating on :-;::
« N
N
a rigid plate. he obtained drag reductions. From his experiments. he concluded: .';Q"

&

-

(1) the surface induced artificial damping is a means for boundary layer stabi-

v

l,» l’ 7,1 .,
[&

lization: (2) the dimensions and properties of the elastic coating for an average
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Reynolds number and speed may be obtained through a simplified theory of dis-

.

tributed damping; (3) up to a 60 percent drag reduction was realized for the coated

-

s
':: surface compared to an uncoated identically shaped model; (4) laminar recovery is
2 possible behind surface imperfections which would normally lead to transition; (5)

. no performance losses occurred due to water impurities; and (6) as the Reynolds 3
number increases the effect of damping should increase due to the improved contact E,,._:.
2 between the boundary layer and wetted surface. Much skepticism has mounted N
- in reference to the results of Kramer since experimental duplication has yet to be :.:;:'
- realized. j\'
1 4
o Important understandings of the instabilities occurring over a flexible surface g'.”
have been brought about by the contributions of Benjamin [3]. His classification 5'":
3 of disturbances over a flexible surface was due in part to a stability discussion by ":::
L Lin [4,5,6] for two-dimensional parallel flows and the analysis by Miles [7,8,9,10] on -::::

surface wave generation by shear flows. Landahl {11] and Benjamin [12,13] further E‘;

A identify distinct characteristics which seperate the modes of instability into three ::

classes: Class A, Class B, and Class C. The Class A instability is realizable in the E::‘

presence of viscosity and is essentially a Tollmien-Schlichting instability modified j', "

by the flexible surface. The waves are associated with a decrease of the total kinetic ;'-f.
L

a energy of the fluid and elastic energy of the wall. Dissipation serves to increase ,.f-
: the wave amplitude to compensate for the energy loss. The waves are identified :E'
as having a speed less than the velocity of the free surface waves as was discussed ::ES_
A by Grosch and Salwen [14]. A Class B instability may occur irrespective of the ° '

presence of viscosity and is presumed similiar to waves induced by wind over water ‘:':

surfaces. Dissipation in the wall tends to stabilize the wave. The instability may be S,E

' recognized by a speed greater than the free surface wave. And a Class C instability is i'\:
- realized where the effective stiffness of the panel is too low to withstand the pressure T';\,‘:.E
R

|,l"-/-/4. T,

~
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e
B I T I I T T S ol M N W o W T > Lt N I N I R A I
NN, OO ‘.r‘ff'--*'.r‘ NOIDT N "-' " NN \ N "" .‘-\_\a\ S SRR "“ B




ety e Lt
RS o

Yo tald ‘Pla ¢'e atatals' i, el S 4ag tad So8 ¥, ‘Ounbaatiactacy 0 ket e’k a b a‘hooth sl at PURD

forces induced on the flexible wall. This instability is more commonly referred to as
a Kevin-Helmholtz instability and occurrs when conservative hydrodynamic forces
cause a unidirectional transfer of energy to the solid.

Grosskreutz [15,16] introduced a new approach in 1971 which focused on the
control of boundary layer stabilization by the use of non-isotropic compliant coat-
ings. His experiments show that compliant coatings may lead to an increase or
decrease in momentum thickness which corresponds to an increase or decrease in
drag, respectively. So depending on the properties of the compliant coating favor-
able effects may be obtained or adverse effects may become dominant.

Carpenter and Garrad (17,18 sought to remove the skeptic.ism formed with
respect to the isotropic, Kramer-type surface and expand on a numerical model
representing the surface. They argue that a Kramer surface does have potential
for transition delay and the reason skepticism arose was due to deficiencies in the
opposing investigations. Also, the classification established by Benjamin was sim-
plified, or reclassified, to the following two instability classes for a boundary layer.
These are the Tollmien-Schlichting instability (TSI) and Flow-induced surface in-
stabilities (FISI). The FISI is basically the Class B instability of Benjamin and
LLandah}l. They explain that the Class C instability is not found due to boundary
layer effects. In the analysis of viscous substrates, Carpenter and Garrad concluded
that a stabilizing effect is found for TSI in the presence of a substrate and where
the two modes coalesce viscous substrates reduce the growth rates of instability.
The specific effect on boundary layer stabilization by a viscous substrate under a
Kramer-type surface was investigated by Carpenter, Gaster and Willis {19]. [t was
found to reduce the growth rates of the Tollmien-Schlichting instability.

Carpenter 120,211 arrived at optimum surface properties for the isotropic case

which resulted in growth rates of instability less than the rigid wall case. Carpenter
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N [22] for the non-isotropic case identified a range of desirable surface properties. N
' : : >
Carpenter and Morris [23] for spatial wave growth and later Carpenter [24] for AN
> ~,
. - . . ~
A temporal wave growth observed growth rates of instability for the non-isotropic -\.
& b .I'
\J
’ compliant surface less than the rigid surface. Morris [25] obtained a slightly modified W
model which enabled a decrease in the nonlinearity of the eigenvalue problem of (23] !‘_'
X )
. e ™
- and (24 from an order of six to five in the eigenvalue parameter. This model is ::::
N - . , i
~ extended in the present discussion to a spatial stability analysis to identify optimal NS
. . e 4
X surface properties which may lead to boundary layer stabilization. L
. The equations governing the stability of flow over a compliant surface are de- :'._\"_'.
Nl PR
N rived in Chapter 2. This results in the Orr-Sommerfeld equation where the depen- ;,‘_-"
>
N dent variable is the cross-stream velocity component of an infinitesimal disturbance. s
. : :‘;—"
X A simple mechanical model for the non-isotropic compliant surface may be repre- S
: -:_-.:
o, sented by an elastic plate over spring-rigid supports. The model is chosen to mimic .;-:._,
the behavior of a compliant coating such as that designed by Grosskreutz. The L\
? K
L coating consists of a thin rubber-type material covering stubs of a similiar material o
D et
: and a viscous substrate fluid surrounding the stubs. The equations governing the ‘_
) »
motion of an element of this plate together with appropriate far field conditions T
o ) Y
’ form the necessary boundary conditions to close the problem. :'.:::'.
- A spectral method approximation is introduced in Chapter 3 as a means of RN
»
> numerical solution. The resuiting matrix of equations forms a nonlinear eigenvalue ::
“ .._'q
- . . . \ l‘.
.. problem of degree five in the eigenvalue parameter. Methods of solution are then s
LY N
: . . o : g
. discussed. A model problem with a known solution is introduced to verify the L2t
. ® .
g accuracy of the numerical methods. g
. A
- By
N In Chapter 4. the solutions to the eigenvalue problem are discussed for the ',;\
% oo
n model problem and rigid wall and compliant wall boundary layer cases. A compar- i’-\
: ison between the rigid and compliant case is presented along with the effect and A
NaY!
:";::
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added cost arising due to the addition of compliance.
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In Chapter 5, the means of obtaining a measure of the sensitivity of an eigen-

value to surface property changes is presented and an accuracy comparison is made
with a finite difference approximation.
In Chapter 6, the methods of surface property optimization are formulated.

The effect of surface property selection for boundary layer stabilization is then

Ty

shown. The results are presented giving a range of property values which may lead

to a delay of transition.
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CHAPTER 2

PHYSICAL DESCRIPTION AND DERIVATION OF PROBLEM

2.1 Introduction

Theoretical investigations into the initial stages of transition are based on the
assumption that laminar flows are affected by small disturbances. For a boundary
layer on a solid body, these disturbances may physically be due to wall roughness
or irregularities in the external flow. The question to answer is whether the dis-
turbances increase or decay in time and space. If the disturbances decay, the main
flow is considered to be stable: alternatively, if the disturbances increase the flow
is considered to be unstable and it is argued that this then leads to transition into
turbulent flow. In this section the theory of linear stability is developed with the

object of determining the flow conditions which may lead to transition.

2.2 Governing Equations

The problem to be addressed is that of a boundary layer over a smooth, solid
surface immersed in an incompressible, uniform flow with constant velocity and

pressure. The equations governing the flow are the non-linear Navier-Stokes equa-

tions

du Ju Ju ou 10p 0%u N 9%u . 0%u (2.10)
— — tv—tw— = —~— 4V :
ot oz dy 0z p oz dr? dy? 02? a
B g e (B Py
ot oz dy Yoz p Oy dz? Jdy? 922 )
Jw . Jw . ow N Jw 13p <62w N 9%w . 82w> (2.1¢c)
— tu— Fr— W = - — :
ot Jr dy z p 0z dr?  Oy? 0z? c
Ou  ov dw _, (2.2
dr  dy 9z 2)
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where u. v, w, and p are instantaneous flow properties. In stability theory of laminar

S

{1

@

L4
A
7

flows an infinitesimal disturbance is introduced on to the laminar flow solution.

"
Hence. the resulting motion has components AN

u(z,y,2,t) = U(z,y,2,t) + u'(z,y,2,t) (2.3q)
v(z,y,2,t) = V(z,y,2,t) +v'(z,y,2,t) (2.3b) Lor

w(z,y,2,t) = W(z,y,2,t) + w'(z,y, 2,t) (2.3¢)

NCRLAL W
AN 1@

Sy
Y YA

p(z,y,z,t) = P(z,y,2.t) + p'(z,y,2,t), (2.34)

5

e

LA WA

where u’. v/, w’ and p’ are the disturbances and U, V,1V and P are the laminar flow

.l. .' 'i

2 e
(A=

solutions. Equations (2.3) are substituted into (2.1) and (2.2). It is assumed that

the undisturbed flow is a solution of the Navier-Stokes equations and that nonlinear
terms in the disturbance are neglected. The remaining terms result in differential
equations governing the disturbance. In boundary layer flows further stipulations
may be made which simplify the governing equations. The motion is essentially
two-dimensional since Squire 126} showed that the two~dir?1ensional flow analysis is
more critical than three-dimensional: the undisturbed streamwise velocity depends
ony only (i.e.. I = U'(y)); and the remaining two mean components, V" and W, are
everywhere zero. These stipulations describe a class of flows known as parallel flows.
Boundary layer flows may be regarded as a good approximation to a parallel flow
because the dependence of the velocity, L', in the streamwise z-direction is much
smaller in comparison to the cross-stream y-direction. The resulting components of

motion (2.3} may be simplified to

z
£

w=U(r.y) ~u'(z.y.t) (2.4a) X

vl J
¥

v = v'(r.y.t) (2.4b)
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w=0 (2.4¢)
p= P(z)+ p'(z.y,t). (2.4d)

By substituting (2.4) into (2.1) and (2.2), the resulting equations describe the

disturbance in a boundary layer.

au’+UQ"—’+ ’ig—~la—p’+ Oul O (2.5a)

ot oz " dy  p oz Y ozz T dy? e
ov' ov’ 1 dp’ %' 9%’

U= — =y | —— t —— 56

ot " Vez pay " {81:2 * 8y2} (2.50)

Ou’ + o _ 0 2.5¢)

dr = dy (2:5¢

[t is also assumed that far from the wall in the cross-stream direction the distur-

bances vanish.

uv'p -0 as y— oo (2.6)

This assumption is necessary to satisfy the physical condition and is suitable for
securing boundary conditions for the resulting boundary-value problem as will later
be shown.

The disturbance is assumed to be a wave which propagates in the z-direction.
The stream function representing a single oscillation of the disturbance is assumed

to be of the form

U(T,y.t) = Unb (y)e *m ), (2.7)

where the wave-length of the disturbance is A = 27/« and the frequency of the dis-

turbance is w. The nondimensional distribution. ¢, is dependent on y only since the
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mean flow depends on y only. The components of the velocity perturbation which
are obtained from (2.7) may be defined as partial derivatives of the streamfunction

and given as

- aw . 4! tlar—w

=g = 6 o' (y)e'l f) (2.8a)
9

§ = - 5% = —jage'(*=7t) (2.86)

where the hat represents nondimensionalized disturbances and primes denote deriva-
tives with respect to y. Eliminating the pressure from (2.5) and substituting (2.8)
into (2.5), a fourth-order. ordinary differential equation resuits for the cross-stream

velocity disturbance. This is given by

o'+ a(y)” + b(y)t =0, (2.9)

where

i

aly) = - iR(@T(y) - 3) - 26

bly) = (Ra*(aU(y) - @) + iRGU (y) + &*.
This equation has nonconstant coefficients and is commonly referred to as the Orr-
Sommerfeld equation which is the stability equation for small disturbances in lam-
inar flows. The equation has been nondimensionalized with the boundary layer

displacement thickness, 6. the {ree-stream velocity, Uy, and density, p,. The

Reynolds number is given by
b’
v

R = (2.10)

With equation (2.9). four appropriate conditions are required to obtain a so-
lution for the disturbance. From (2.6) where the disturbances vanish as infinity is

approached in the cross-stream direction two boundary conditions result.

t(y). #'(y) —0 as y - x (2.11)
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In the section following, the remaining two boundary conditions necessary to
solve (2.9) will be obtained. These are the equations describing the disturbance at

the compliant surface.

2.3 Compliant Boundary Conditions:

A simple mechanical model for the non-isotropic compliant surface may be
obtained from Morris [25]. This is a revised formulation of Carpenter and Morris
[23] and Carpenter [24]. The concepts of the model and derivation of the equations
of motion for the disturbance at the surface follow and conclude with the desired
boundary conditions. The model consists of a thin. elastic plate supported by
hinged and sprung rigid members inclined to the horizontal at an angle § when in
equilibrium. A sketch showing the model is given in Figure (2.1). The motion of
the surface is treated such that each element of the plate oscillates in a pendulum
like motion at the end of its rigid member. In equilibrium, the rigid members are
assumed at rest. The distance between each member is assumed smaller than the
wave-length of a disturbance normal to the rigid member. An equation of motion
for a surface element is desired which satisfies the constraint that the total force
acting on the surface by the mechanical forces is equal to the forces caused by the

external fluid motion on the surface. Such an equation may be given by

(€ 68y 9y .. ¢
EYYRE Bax4 cos+K¢E 60 — Ebﬁ&ne

pmb

= — n'cosf + o'cosf + 7'sind. (2.12)

where the terms on the left hand side of (2.12) refer to mechanical forces and the
terms on the right refer to fluid motion forces due to viscosity and pressure. For
the case of an isotropic surface, viscous interaction on the the right side is neglected

and 8 = 0.
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The physical meaning of each term is given respectively as
(1.) rate of change of momentum of the surface element

2.) resistance due to bending stiffness of plate

(%)

resistance due to spring stiffness

=S

tension force induced by relative motion of adjacent rigid members

[<)}

.} force due to dynamic pressure fluctuations
.} force due to viscous normal stress fluctuations

(
(
(
(
(6
(7.) force due to viscous shear stress fluctuations
The variables in (2.12) may be defined as: r and y are the streamwise and cross-
stream coordinates: ¢ and n correspond to the streamwise and cross-stream surface
displacements; 68 is the angular displacement of the element relative to equilibrium;
¢ is the rigid member length; p,, and b are the plate density and thickness respec-
tively; B and E are the flexural rigidity and modulus of elasticity of the plate; K is
the spring stiffness; and p’. ¢’. and 7' are the pressure. viscous normal stress, and
viscous shear stress fluctuations on the plate respectively.

The necessary equations of motion for the surface element are coupled by a
relationship between the normal and tangential motions (n.¢) with the angular

displacement. 64. This relationship may be given by

¢ =€ b60sinf and n =1{ 66cosh, (2.13)

or

€60 =n;cos0 and ¢ = ntand. (2.14)

The normal displacement of the surface is assumed to take the form

n :6-561((11—0;1“' (215)
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The continuity equation for the normal motion at the surface implies

on oY

—_ = = 14 =, 2.16

¢ 8z 0w ¥T7 (2.16)
or linearized: nw = 1.

An alternative form results by letting v = € 66 be represented in a similiar manner

as the normal displacement (2.15). This results in

U = —1wcosbH. (2.17)

The continuity equation for the tangential motion of the surface element implies

3]
U+u' = 3 = —sinf at y=mn, (2.18)

or linearized: U'n+u' = %i}sinB.
The linearization occurs at y = 0. Substituting appropriately (2.14), (2.16) and

i = —90/ia into (2.18) yields

a(U' (0)cosd + iwsinb) + wcosdd' = 0. (2.19)

Equations (2.12), (2.16), and (2.19) are the resulting equations of motion and
boundary conditions. Since the normal and tangential surface motion is coupled
one equation may be eliminated algebraically.

Equation (2.12) in nondimensional form appears as

~Cpq@*F + Cga'Feos®8+CkT + Craqsind

= — pcosl + Gcosd + Tsind, (2.20)
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" where
" .
> Pmb B Ké Eb
Cyvm = B=————=, Cxk=—=, and Cr = ————.
po6*’ poU2,6"3 poUZ, poUZ 6"
b
* The normal viscous stress perturbation is given by
: ov’
* /
y o =2u—, (2.21a)
- dy
: or nondimensionally h A
. 2. e
6==0" (2.216) )
> R NI
-, A
o _\','\-
” The viscous shear stress perturbation is given by N
' °
% v’ ou' N
/ AL
= (= + —), 2.22a s
- o dzx dy ) ( ) .\-;:
X o X
or nondimensionally ®
. LES*
. VoA | =24 o
} T=—(v +a‘?). 2.22b 200
l.‘.b
The pressure perturbation is found from the linearized cross-stream component of :::::

10

' the Navier-Stokes equations BNy
pe. ('\-’
~ P
s, o
W . Ry
o ——ar | =277~ | =2F7A 2. !, _2. . o

awd' +a*U b+ a?Ud’ = —ia®p - E(azv' - 9", (2.23a) )
) -~ -

. 7y

" N

. or f".'_
3 S
Y o
2 1 " ' ' 7! ey
X p=——=(0" - &% + RV + aRU b). (2.23b) £

a‘R ®

v ."Jl‘ t
" -' LY !
- F . . oo

X From the continuity relations the following may be defined N
X :,«;
ol NS

e
- af . .
_ —10 (]
g Y= —— . (2-24) .:.'-:
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Substituting (2.21), (2.22), (2.23), and (2.24) into (2.20) and collecting terms with

similiar powers of a, the following boundary condition results.

&°[Cpcos®8d’'(0)] + & [Crsin69'(0)]

cost _,

+a° [(2wsind — 3iﬁl(0)cosﬂ) R (0)]
_ _9 t —t I sind N7
+a[(Ck — @*Cpm)9'(0) + (U (0)cosd + iwsind) 9"(0)]
p—, — . ..cosl _,, —g . o
+1(U (0)cosf + iwsind) ——0""(0) — 1@*sinfcosdt’(0) =0 (2.25)

The final boundary condition is given by equation (2.19) which is

E(U,(O)COSO + 1wsin8)5(0) + wecosd' (0) = 0.

The equations of motion governing the stability of the flow over a non-isotropic
compliant surface for the cross-stream velocity component of the disturbance have
been derived. The means of obtaining the solution will be described in the next
chapter. For convenience, the overbar on U representing the Blasius solution will

hereafter be neglected.
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CHAPTER 3

NONLINEAR EIGENVALUE PROBLEM

3.1 Introduction

In the previous chapter a detailed analysis was performed to arrive at a math-
ematical representation of the physical problem, namely the stability analysis of
flow over a compliant surface. The present chapter will formulate the equations
into a form suitable for obtaining a numerical solution and describe the methods of

solution.

3.2 The Orr-Sommerfeld Problem

In hydrodynamic stability theory, the Orr-Sommerfeld equation (2.9) governs
the normal velocity component of the disturbance imposed on the flow. The so-
lution will give the characteristic instabilities present for a time or space varying
analysis. The problem at hand varies in space and is referred to as a spatial stability
problem. The wavenumber, @ , is complex and is taken to be the unknown eigen-
value. A negative imaginary part of & indicates that the solution is growing in the
streamwise direction. This is an indication of an instability growth present in the
flow. A zero imaginary part suggests that the solution is neutral. And a positive
imaginary part suggests that the solution decays in the streamwise direction. The
frequency, W, and Reynolds number, R, are both real and specified. The alternative
problem in stability theory which will not be solved in this study is time varying,
or temporal. In such, @ and R are both real and specified while the frequency
is complex and becomes the unknown eigenvalue of interest. The frequency and
wavenumber are related and together form the phase velocity, ¢. which is defined

as ¢ = w/a.
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The problem of boundary layer flow over a flat plate is an eigenvalue problem in Y
[ ]
& and is said to be nonlinear to a degree of four in the eigenparameter. The problem ,.g}-:
at hand is nonlinear to a degree of five where the added degree of nonlinearity is 5-";'
introduced in the boundary condition (2.25). The nonconstant coefficients result DA

due to the streamwise component of the Blasius velocity profile the solution of

«“
ottt

which is only known numerically. So the eigenvalue problem must also be solved

L e

L
numerically. The technique used to formulate the numerical approximation was ;_:;l.:
previously used by Bridges and Morris [27,28| and Bridges [29] in the solution of ::_'.Q:"
the fourth-order nonlinear eigenvalue problem for the flow over a rigid surface. The _-?:E
reason for such an approach will be made evident. -:::: ,

The domain of the equation is from zero at the surface to infinity in the cross-

stream direction. In order to solve the problem numerically, the domain may either

be truncated or transformed to some finite domain. Grosch and Orszag [30] have B
]
performed a study of this subject and suggest an algebraic transformation \:‘.5_
AT
B
Sy o
L ! el
- +z
z = v_ - and y =L -——. (3.1a.h) a7
y+ L 1 —:z °
R
where z < |[—1, + 1] and y = [0.oc). In this analysis a value of L 2 will be ‘\

used and is suggested as optimum by Bridges for the rigid surface prablem. The

corresponding metric arrived at is

(1 - 2% dofz)

m(z)¢'(z) =
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:' This introduces an ambiguity as to the value of (1) since the metric approaches

zero as z — 1. In order to temporarily avoid such a problem, a nondimensional

XA
P A

, SRS
%400

dummy variable, £(z) , is introduced and defined as

=T
ERAR
5’5.":

e

Sy

N

£ =md'. (3.4)

ERLr]

3,
e e
LS

N Making the appropriate substitutions of (3.2) and (3.4) into (2.9), the Orr-

(2
v
'y

Sommerfeld equation in the transformed domain may be written as

., ~'.\ l& D".l

f 3
rr-r
‘l
PALSSE
AAASH ALY

) m(m(mé')) ~ ma(2)¢' +b(z)0 =0, (3.5a)

”

L 4
[
L

[t

P A A4

where

N

f

h)

a(z) = - (R(@U(z) - =) - 2&° (3.5b)

1
-."'.'.5‘-‘-\'

'E;.

b(z) = iRa*(@al(z) — J) + taRm(mU'(2))" + & (3.5¢)

n".v".} l.f;,:i '.

hY
L AR

with far field conditions

a a8 e

o L s
Oy W

#(1) = (1) =0 (3.6a. b)
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and compliant boundary conditions

—5
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and

a(cosOU'(—1) + isind)D(~1) + GeosfE(~1) = 0, (3.6d)

where the nondimensional, constant coefficients were previously defined as

Pmb B Ké Eb
Cypm = -, = ———, Cgkg = \ d Cpr = ——.
MT s TP T Uzt KT puz MY T T L uas

The primes in (3.4)-(3.6) denote derivatives with respect to the transformed vari-
able, z. and U(z) is the Blasius streamwise velocity profile in the transformed do-
main. A plot of the Blasius profile versus the transformed variable. z, is shown in
Figure {3.1). In the limiting case where C'asy — oo, the compliant problem becomes
a rigid wall problem.

A spectral approach known as a finite Chebyshev series expansion is sought for
the solution of (3.4)-(3.6). A spectral expansion is an approximation of an unknown
function by a series of known functions which satisfy the boundary conditions.
Gottlieb and Orszag [31] and Fox and Parker {32] discuss in detail the advantages
of such an approximation and give various examples. Gottlieb and Orszag state
that a Chebyshev polynomial expansion gives a good representation of functions
that undergo rapid changes in narrow boundary layers. One reason is that the
polynomials can resolve changes over distances of order n =2 where n is the number of
Chebyshev series terms retained. Also, for the Chebyshev series expansion the error
converges exponentially in comparison to finite difference methods which converge
algebraically.

With this in mind, the Chebyshev series expansion for the disturbance in equa-

tions (3.4)-(3.6) may be given by
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The Blasius solution in the transformed domain.
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#(2) = Y _ 'vaTa(z) (3.7)

and

£(2) = Y '&aTu(2). (3.8)

The prime on the summation signifies that the leading term of the series is to be

halved. The Blasius velocity profile is expanded in a similiar series.

U(z) = Y "unTu(2) (3.9)

T C K W Y S VR K S J AR S RS T Y RN wmmre—e #
3
" 2
<

Details on how a known function may be represented by a Chebyshev series expan-
sion may be found in Appendix A and in Appendix B specifically for the Blasius

solution.
Due to the properties of Chebyshev polynomials it is convenient to pose equa-

tions (3.4)-{3.6) in integral form. As such, the following equations result.

my — /m’i- = /£+e,, (3.10)

nes e[ [ | [ [ [ fruc ] [ fomre
+///bv+€1+€22+€3i2i:0 (3.11)

where a(z) and b(z) are given by (3.5b) and (3.5c), and

and
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Pi(z) = - 6m*m/ (3.12b)
Py(z) = Tm(m')? +4m*m” (3.12¢)
Ps3(z) = ~ (m(mm')")’ (3.12d)

In connection with a Chebyshev series expansion, the Tau method which was
introduced by Lanczos in 1938 will be used to remove the constants of integration.
A detailed explanation may be found in [31] and [33], but at present only a brief
outline of the method will be presented without proofs.

The series approximation of a function, £(z) or v(z), previously introduced in
(3.8) and (3.7) has k additional terms added to it where k represents the number of
independent boundary constraints that must be applied (i.e., one and three in this
particular problem). The resulting approximation is the exact solution to a slightly
modified problem. This results in N + 3 unknowns for N + 2 equations and one
boundary constraint for equation (3.10) and N + 7 unknown coefficients for NV + 4
equations and three boundary constraints for equation (3.11). Respectively, the
equations involving the coefficients of T,(z) and T,(z),T)(z) and T2(z) for (3.10)
and (3.11) serve to determine the constants of integration only and so may be
disregarded for the present analysis. The added “tau”™ terms need not be explicitly
calculated either. The remaining system is composed of N equations with one
boundary constraint and N — 2 equations with three boundary constraints. The
two systems of equations when combined result in a square N+ 1 matrix of equations
as will be shown.

Using the Chebyshev product and integral formulae, the series expansions (3.7)-

(3.9) and the metric (3.2), represented by the following Chebyshev series

3 1 1
m(z) = 7 To(2) = $Ti(2) + 7 Ta(z). (3.13)
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are substituted into equations (3.10) and (3.11). This results in a set of equations
A with the vectors of unknown Chebyshev coefficicuts. {£} and {v} . Using the far

field condition. £(1) = 0 . with equation (3.10). the following relation is found.

{&} = 'THv} (3.14)

h PP

{£} and {v} are column vectors containing unknown Chebyshev coefficients and [T

is a square NV + 1 matrix. The remaining thiree boundary conditions with equation

Ol NN

(3.11) give
| Lgockas-“}{v} + {é Dkas‘k}{s} = {0}, (3.15)

Dl B e

where [Ck| and [Dy| are complex square matrices of order N+1 which are functions
of @, R and the compliant boundary condition properties. The dummy vector. {£},
may be eliminated from (3.15) by the substitution of (3.14). The following nonlinear

eigenvalue problem results,

[Ds(a)|{v} = {0}, (3.16)

where

Ds(@) = Coa® + Cya* + Cya” + C3a? + Cqa + Cs. (3.17)

This forms the Chebyshev discretization of the Orr-Sommerfeld equation over a

compliant surface.
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3.3 Solution of the Nonlinear Matrix Eigenvalue Problem

The eigenvalue problem considered is nonlinear in @ to the degree of five where
the highest degree of nonlinearity is introduced in the boundary condition. The
system. Ds(a), may be referred to as .a lambda matrix. Since one boundary condi-
tion is independent of @ it may be eliminated using appropriate column operations;
thus, the problem is reduced to N equations and N unknowns, or a system of com-
plex square matrices of order N. For the solution of the lambda matrix, three global
methods and one local refinement method will be considered. A global method
is global only in the sense that an initial guess for the eigenvalue determination is
unnecessary. In a local method an initial guess is required. The global methods are:
{1) linearization by a companion matrix, (2) factorization with Bernoulli iteration
to obtain a subset of the spectrum, and (3) factorization with Traub iteration to
obtain a subset of the spectrum. The local method is a refinement of Newton's
method derived by Lancaster i34] for a single eigenvalue.

The comipanion matrix method has been used for the Orr-Sommerfeld problem
by Benney and Orszag [35!. Bridges and Morris {33} and Gohberg, Lancaster and
Rodman {361 discuss both the companion matrix method and factorization. From
such. the analysis is extended to the larger system at hand. The companion matrix
is a linearization of the lambda matrix and therefore is of a larger order. If m is
the order of the matrix system, Ds(a), then the order of the companion matrix is
5m. When a differential equation is formulated as a matrix problem. it takes on

the form of

Az = ABz (3.19)

where A is the eigenvalue and r represents the eigenvector. Eigenvalue determina-
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tion is found by the condition ‘

&L l'¢
P
v

e

Det|A — AB| =0 (3.20)
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A similiar construction for the present problem yields [ ]
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(3.21)

Referring to (3.20), if B is invertible a more efficient and equivalent form is
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Det|B~'A - XI| =0. (3.22)
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The leading coefficient matrix, [Co|, is singular since the only entries are introduced
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To remove the singularity in {C,] an algebraic transformation is introduced ' oy
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where s is a real constant taken in this analysis to be (&/0.35). The problem may ~
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now be cast in the form of (3.22) giving v
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[0

—C;‘Cl —C_1C2 —C_IC3 —CL,_IC4 —C;'Cs
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(3.25)
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The eigenvalues of (3.25) may be obtained using the efficient QR algorithm.
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\ The second method is derived by a matrix equivalent to synthetic division to
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compute the dominant solvent. After applying the algebraic transformation (3.25),
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the following results
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Ds(A) = {Q4(A)}(A ~Y) + R,. (3.26)
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where
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Qa(A) =C A + (CoY + CJA® + (C. Y2+ C1Y + C)A?
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¥
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H(CoY2 +C YE + CoY + Ca)A

"5
L)

@

F(CoY* +C Y3 + CoY 2 + CaY + Cy)

and is considered to be the right quotient and R, is the right remainder of the
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division of Ds(A) by (A —Y'). For (A] —Y') to be a factor of Ds(A), the remainder,
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R,, must be set to zero. This is given by
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R, =C.Y° + C1Y* + CoY3 +C3Y? + CuY +Cs5 = 0. (3.27)

The square matrix, Y, is referred to as the right solvent. The Bernoulli iteration
method will be incorporated to solve the matrix polynomial (3.27). For such we -~
. .."-

seek the dominant solvent which may be obtained from the iteration formula

Yier = —C7HCy + (C2 + (Ca + (Cy + CsY Y)Y, 2HY Y)Y, 7Y, (3.28) PR
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where Y, =Y, =Y, =Y;=0and Yy = ~C;'C,.

Upon convergence, the eigenvalues are obtained by using the QR algorithm.

The final global method to be considered was developed by Dennis, Traub and

Weber [37] to compute a dominant solvent. The algorithm is a generalization of

an algorithm for scalar polynomials by Traub [38]. The method was discussed by

Morris [25] for the compliant problem approaching the limiting case of the rigid

wall problem. The method consists of two iterative steps. The first consists of

constructing the equivalent of the G-polynomials.

G,(Y) =1

Gn+1(Y) = Go (Y)Y =TV Ds(v),

Ga(Y)=TWys oty oMy 4 rWy2 4 My + 1V,

The second stage is given by

and

Yigr = GL(Y,)GZ_I_I(Y,)

(3.29a)

(3.296)

(3.29¢)

(3.30a)

(3.306)

where L is the final G-polynomial built-up. The first stage of the algorithm is

equivalent to the Bernoulli iteration. The second stage is only linearly convergent,

but the asymptotic error constant may be made as small as desired by increasing

the number of iterations of the first stage. A subset of the eigenvalue spectrum may

be obtained by using the QR algorithm.
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The final method to be considered is a locally convergent algorithm which
requires a sufficiently good initial guess for the refinement of a single eigenvalue.
The local scheme is a refinement of Newton's method and has quadratic convergence.
The method is attribuied to Lancaster [34] and an example of its implementation

may be found in Bridges and Morris {33]. The iterative formula is given by

G =@ - 2f(@)/{{f@))? - @)}, for i=012,... (3.31a)

f(@) = T.{D~"(a;) D'") (@)} (3.316)

f(@) = T{D (@) D* (&) - [D~" (&) D" (a,)]?}. (3.31¢)

1 is the inverse of D and D(*) denotes

T,{s} denotes the trace of matrix [s|, D~
the ith derivative of D with respect to @. It should be noted that only one matrix
inverse is required. Also, as will be discussed in a later chapter, the eigenvectors
necessary for the surface property optimization may be conveniently computed as
an offshoot of this method making use of the matrix operations already performed.

This concludes the outline of methods considered for eigenvalue determination.
Actual global method comparisons for accuracy and efficiency were not in the main
context of this investigation. The global schemes are necessary to determine a good
initial guess for the least damped eigenvalues for TSI and FISI to be refined in
the more efficient local method. The sensitivity of the eigenmodes to changes in
the surface properties may then be performed, followed by the optimization of the
surface properties. With respect to comparisons and applications, reference may be

made to Bridges and Morris [33] and Morris [25].
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3.4 A Model Eigenvalue Problem
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When investigating a complex problem requiring numerical techniques as a

Ay
[l
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%

means to obtaining a solution, it is advantageous to devise a model problem with an

‘l... -
:{.- s,
o

[
2

[/

exact solution which captures as many of the characteristics of the physical problem

v

. v’
* g
-i‘t‘

of interest as possible. One chooses a model problem such that the numerical

solution may be compared with the known exact solution. The compliant surface
problem has many identifiable characteristics most of which may be incorporated
in the model.

The model boundary value problem is given by

@
o h

v S

" - 2awe’ + atd =0 (3.32a)

RAN
I.I

with boundary conditions

4" e e
LT
e I
L5MANN
-."-' g .

(3.32b)

Ay

(3.32¢)

where the primes represent derivatives with respect to z = {—1,+1|. The eigenvalue,
a. enters the boundary condition at a higher power than in the differential equation
which is similiar to the physical problem. A stiffness parameter, ¢, which may be
thought of as R~!/2, multiplies the highest derivative so as to simulate the viscous
terms in the physical problem.

The exact solution of (3.32) is given by
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For a numerical solution the equation may be put in integral form, or

e¢~26¢3/¢>+62//¢+e0+612=0.

The function is approximated by a finite Chebyshev series

.
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(3.37)
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By substituting (3.37) into (3.36) and incorporating the Tau method, the problem

may be cast into a lambda matrix which is of order three in the eigenvalue and
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given by
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-0
.

D3(a) = CUZZ-S + C162 + Cra + Cg, (338)
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where [C;] are complex square matrices of order N+1. The leading coefficient ma-
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trix, [C,|, is singular so transformation (3.24) is applied. The methods discussed in
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the previous section apply in a similiar manner to that of the physical problem.

o
b}
o

¥
h Yt

The stage has now been set for solving the problem at hand and the methods of

£
'
.

solution for the nonlinear eigenvalue problems have been described. The accuracy
of the eigenvalues and eigenfunction for a given number of Chebyshev polynomials
will be tested for the compliant wall, the rigid wall, and the model problem in the

next chapter.
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] NUMERICAL RESULTS OF EIGENVALUE PROBLEMS
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4.1 Model Problem
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As was mentioned in the previous chapter, a model boundary-value problem

'.:
['d

2o

A with characteristics similiar to the physical problem is used to test the numerical _,":;

X AN
methods. The global methods of solution were discussed in the previous chapter :.:-‘:\.EE
and results from each method are given in Table (4.1) for ¢ = 1.0 and & = 0.25. :’.,r
As is shown. for a small number of Chebyshev polvnomials the methods give a ::".'_é

A comparatively similiar accuracy for the given number of iterations. The Bernoulli EE}?,

and Traub iteration methods result in only a subset of the eigenvalue spectrum. As
can be seen the third eigenvalue is undetected by these methods for N=5. Since

only a sufficiently good initial guess is required for an eigenvalue, little else will

be needed in the form of demonstration and comparison with respect to the global

methods. A more indepth comparison of the these methods and the local method

; may be obtained from Morris (25|, Bridges and Morris [33]. Benney and Orszag {35]. h(.
and Dennis, Traub and Weber [37!. f-}C._ .

The corresponding eigenfunction is obtained for the smallest eigenvalue in Table ':

(4.1). It is sufficient at present to view the accuracy of the method for a given ..::..'
number of Chebyshev polynomials (N) and an imposed stiffness (¢). In Figure (4.1) :,:N_.:"
a plot for N=5,7, and 10 with ¢ = 1.0. shows the eigenfunction to he somewhat -:.\.
AN

' independent of the number of polynomials. The numerical solution is essentially :::Z'S
indistinguishable from the exact solution. The problem is made stiff by requiring r;;_.:":_.

the parameter ¢ to be small. The corresponding eigenfunctions for N =10 and E\E

€ =1, 1/’v166. and 1 \ 500 are shown in Figure (4.2). The numerical and exact ,.:E.ig

solutions again prove to be indistinguishable. This provides much encouragement ".;? "
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mials for the model problem. (¢ = 1.0 and & = 0.25).

linear companion matrix method:

Table 4.1: Accuracy of eigenvalues relative to the number of Chebyshev polyno-

N=5

N=7

|

N=10

Exact

0.54543587
0.98403404
1.41189790
1.76754890

|

0.54541156 | 0.54541160

0.98403205
1.41193160
1.76666540

0.98403009
1.41191660
1.76673320

0.54541160
0.98403009
1.41191660
1.76673320

Bernoulli iteration(15):

N=5

N=T

l

N=10

Exact

0.54543587
0.98408419

1.76755180

0.54541156
0.98402771
1.41134490
1.76666740

0.54541160
0.98407944
1.41176970
1.76673320

0.54541160
0.98403009
1.41191660
1.76673320

Traub iteration(5:4):

N=5

N=7

N=10

Exact

0.54543587
0.98399391

1.76754910

0.54541156
0.98403206
1.41192940
1.76666540

0.54541160
0.98402854
1.4119248
1.76671350

0.54541160
0.98403009
1.41191660
1.76673320
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for the use of this approach for the physical problem which is stiff. s g

! ’:'\
: 4.2 Rigid Wall Case 5:;::
:,-E The flow properties used are: the freestream velocity and density are 20 m/s EEEE
. and 1000 kg/m?3, respectively;the Poisson ratio is 0.5;and the viscosity is .001002 ?-i'
: kg/ms. These are obvious choices for the density and viscosity since water can EEE
D s
W be found to have a density and viscosity of 1000-1020 kg/m® and .001002 kg/ms, EEE::
respectively. The compliant surface model is taken to be a flexible plate. As the "\:: ‘_
q mass of the plate is increased, the characteristics of the problem become more .':.-:
; similiar to that of a rigid, flat surface. The rigid surface is achieved in the limit as :::::‘
. the mass coefficient, Cps, approaches infinity. The solutions obtained in this limit f}.;h.
y should coalesce with published results for the solution of the Blasius velocity profile \
over a flat plate. A common reference for comparison is the neutral stability curve.

For this comparison it is sufficient to use only fifteen Chebyshev polynomials to r.'_

%

obtain an adequate accuracy. The results are listed in Table (4.2) and a comparison :-_f\: \
is made in Figure (4.3) with values from Jordinson [39] and Van Stijn and Van De I:EE
Vooren [40]. As is expected the results fall on a common curve. {;’:

As with the eigenvalue, the normalized eigenfunction comparison must be made \g;
with other numerical results since the exact solution is not known. Jordinson [39] EE::.:"

referred to the case where R=998,& = .1122, and @ = (.3086, —.0057). Using N=15, i;
a comparison results in nearly an exact fit as shown in Figure (4.4). The results :'_'

: begin to deviate slightly as the distance from the wall increases. An observable ::..;:
: jump, or step, occurrs in Jordinson’s analysis which is not found in the present ‘:F;T
calculations. Since the function is well behaved no physical explanation justifies -z
.‘-‘---'-
such a step. And finally a last comparison is made to determine the eigenfunction ;;‘;
sensitivity to the number of Chebyshev polynomials. Figure (4.5) is an eigenfunction ."':
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Table 4.2: Values of R,a,, and & for the neutral curve in the }imit as Cyy — oo

which as the compliant surface becoming a rigid plate. { N

R a, w
2200.0 .3095 .1010
1400.0 3356 1185
0800.0 3557 .1368
0520.0 3014 1193
0536.5 2753 .1067
0604.0 .2406 .0893
1364.0 .1450 .0433
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comparison for N=10,15, and 20 with the results by Jordinson corresponding to
R=336, @ = .1297, and a = (.3084,.0079). As with the model, the eigenfunctions

are relatively independent of the number of Chebyshev polynomials for the rigid

wall case to achieve sufficiently accurate solutions.

. :'./-:’,l g
1 4.3 Compliant Wall Case s

b -—'p.‘.l

P _‘4’_'-'

X The discussion in this section will primarily be devoted to determining an {_;

) Fae)
' adequate number of polynomials required for a sufficiently accurate, or converged,

poly q ]

"
L)
-,

soiution of eigenvalues and the corresponding eigenfunction. The case that will be

B
Lt e Ny
25l e

examined corresponds to § = 60 degrees in Table (4.3) obtained from Carpenter

L
.'J'.‘l.

and Morris [23] with R = 2240, and @ = 0.055. Carpenter and Morris chose an

appropriate compliant coating density since rubber may have a density of 960-1300

et 3
".".';."/'« .
\’\’

A Y

5

kg/m® [41]. A swivel-arm angle of § = 60 for the present calculations enables a

2,

comparison to be made with the results obtained from the sixth-order model of

¢

e e
o

Carpenter and Morris. The complex wavenumber indicating the onset of instability

is of interest in this investigation, so the convergence and accuracy of such are :
~
computed. In Table (4.4) the wavenumber is shown to converge, but a large number :".v' )
of polynomials are required for a desired accuracy. The rigid wall case requires only :Eéé
about one-third as many polynomials for a comparable accuracy. Carpenter and _\-":QE
Morris chose 48 polynomials for their stability calculations. With this choice the :_:: )
' NN

P S

%%

! two-digits of accuracy obtained were sufficient for obtaining adequate results. The

cost of additional accuracy may be seen in Table (4.4) where a gain of two significant \J
digits results in approximately triple the computational cost. 1;;-‘
By looking at the least damped wavenumber for the TSI wave over a frequency -
A

variation, the frequency at which the largest growth rate occurs may be determined. :ﬁ;
[N 0

Shown in Figures (4.6) and (4.7) are plots of the wavenumber verses the frequency
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Table 4.3: Optimum properties of compliant surfaces obtained from Carpenter

and Morris [23].

b B
(mm) (Nm)
0.7350 0.61085 x 10~4
0.4540 | 0.97900 x 10~°
0.2500 | 0.11520 x 105
| 0.1110 | 0.77300 x 10~7
i 0.0286 0.11100 x 1078

2

i‘fu.
]

-
LA

v r s
’

L
R
}U'l
- -

®
4

Sy

L4
WA

b

: '.‘..:'\I'f".
PEL

P

r .«
Ll

RPN
‘:‘- '::'\f‘n !

ree

' d
P
.7®

']
e
Pl l.‘:.

A,
P’
-".

®

;L

R

g
-

RN FAC

he

O UL U U e
A '.'.'.\ I ROASA At



Y T eV EES

42

Table 4.4: Number of Chebyshev polynomials required for eigenvalue convergence

for R=2240, & = 0.055, § = 60 and B=0.08673 x 10~°.

«x

cpu time(s)

32 .15805932,—.30840550 x 10~ 2
40 .15799165,—.31577908 x 10~?2
48 .15781832,-.31367360 x 102
52 .15780772,—.31282229 x 102
56 .15780989,—.31412738 x 102
60 .15781560,—.31414286 x 1072
62 .15781491,-.31393189 x 102
65 .15781568,—.31395635 x 102
68 .15781581,-.31399292 x 102
69 .15781518,—.31392974 x 102
72 .15781542,—.31396316 x 102
75 .15781538,—.31396114 x 102
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compared with the results obtained by Carpenter and Morris. The results are
in agreement. These figures serve two basic functions. First, the revised model
formulation by Morris which is being used in the present calculations is shown to be
adequate in comparison to the higher order model of [23]. And second, they, along
with the surface properties in Table (4.3) form a starting point, or reference point, in
the optimization procedure. In conjunction with this, a comparison between these
results with a rigid surface makes evident the possibility of delaying transition. At a
frequency of 0.055 the compliant surface has a least damped wavenumber of ~.0031
while the rigid surface has a value of -.01. This holds for the surface properties of
6 = 60. But this investigation seeks to show that by varying the surface properties,

reduced growth rates of instability or even complete stabilizetion of the boundary

layer theoretically may be achieved.

A question as to why the large number of Chebyshev polynomials is required
arises for the compliant case; one possible answer may be found from analyzing
the eigenfunction behavior. The eigenfunctions for N=10,24, and 48 are shown in
Figure (4.8) for the least damped wavenumber of TSI. The corresponding results
show rather significant differences between the curves near the boundary. If one
were to make a comparison of the numerical aspects between the rigid and compliant
cases, more insight may be shed on the problem in question. The Chebyshev series
coefficients in general have the property that the leading coefficient is the largest
in magnitude. The remaining coefficients progressively get smaller as the order of
the terms increase. With such the very small. normally insignificant, trailing terms
may be neglected to obtain an accurate solution. If this were not the case, then
essentially an infinite number of terms would be required for a solution. For the
rigid wall case, the smaller terms may be neglected and a relatively accurate solution

is obtained. The compliant case behaves in an unconventional manner. The
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leading four or five coefficients decrease in magnitude gradually as is expected; the
remaining coefficients drop-off to small values very rapidly and non-uniformly. As
before, it might be expected that the smaller trailing terms may be dropped and an
accurate solation would be achieved requiring fewer Chebyshev polynomials. This is
a somewhat true statement since for N=10 a rather crude approximation is achieved.
On the other hand, a sufficiently accurate solution requires the very small trailing
coefficients to remain a part of the solution. A possible reason for the necessity of
the additional terms may lie in the convergence characteristics of the function. It
may be possible that although the Euclidean norm of the system becomes small,
or converges, this may not be a sufficient convergence criteria. Rather the infinity-
norm may not be small.

As a means to reduce the required number of Chebyshev polynomials, stretch-
ing factors were implemented to decrease the amount of stiffness in the problem.
No reduction in the number of required Chebyshev polynomials resulted. Instead of
using Chebyshev polynomials for the series approximation, improved convergence
of the series might be realized by using a different polynomial such as the Legendre
polynomial. Alternatively, a multi-¢omain approach may be attempted. The first
domain would extend from the compliant surface out in the cross-stream direction
a small distance. The outer domain is matched with the inner and proceeds to
infinity. The solution of the inner domain would require a larger number of poly-
nomials for an accurate solution as compared to the outer. The idea behind such
an approach is that the combined solution may require less polynomials than the
single domain problem.

A complete explanation for the behavior of the series approximation for the

compliant surface problem is unconclusive at present.
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CHAPTER 5 ALY

EIGENMODE SENSITIVITY TO BOUNDARY PARAMETERS :*'{":\-\"

5.1 Introduction o

An aspect of the surface property optimization is obtaining a technique to AN
determine the changes in the eigenmodes with respect to the boundary parameters.
A method which appears to have potential was used by Bridges and Morris [27,33]
to determine the frequency of the most unstable eigenvalue will be used here to
determine the sensitivity of the least damped eigenmodes to boundary parameter
changes. In Chapter 3 it was mentioned that Lancaster’s local eigenvalué refinement
method could be extended to perform a portion of the optimization procedure. The
formulation of the method will be described and tested using the model problem

then extended to the physical problem.

5.2 Model Problem Parameter

Since the optimization desired occurrs with respect to boundary parameters,

a modification is made to the model problem (3.32). A nondimensional surface 2.

¢ <L,

Saan

.5' o s,

parameter, 3, is introduced giving the modified boundary condition.
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D3(@,8) = C.Ba@° + Cy&* + Caa + Ca.

Before deriving the necessary relation, an additional vector must be defined and
a means of obtaining this vector as well as the right eigenvector must be discussed.

This vector may be defined such that

{a"}¥(Ds(@.8)] = {0}, (5-3)

where {a"} is referred to as the left eigenvector and H denotes the complex conju-

gate transpose. Relation (5.3) may also be cast in the form

(D5 (@.8){a"} = {0}. (5.4)

This has a similar form to (5.2) for the right eigenvector;so a common technique

for determining the eigenvectors may be used. To compute a single eigenvector the

following inverse iteration is used

[D(@){z**'} = o{z"}, (5.5)

where o is a scaling, or normalizing, factor. The procedure converges in two or three
iterations using an initial guess of {z°} = [1,1,...,1]T. The right eigenvector may be
conveniently computed using the already formed lambda matrix, [ D], from the local
method;the left eigenvector may similiarly be computed with the inverted lambda
matrix, [D~'], from the local method by-way-of the relation {A~'}# = [AH]-1
The necessary components for the differentiation have been computed, so the

derivation of the sensitivity relations will follow. If the matrix system (5.2) is
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differentiated with respect to the boundary parameter, 3, the following may be
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obtained.
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By multiplying (5.6) by {a"}? the last term is eliminated and the result is
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Recall that the parameter, 3, appears only in the leading coefficient matrix, so (5.7)

may be given by

oa _ _ {a"}¥[Co]a*{a}
a8 {a*}H[38C,a* + 2C\a + Cz|{a}

(5.8)

-

The matrix [D:(,l)] may also be taken from the local method described in Chapter
3. From (5.8) a means has been obtained to determine the effect of an eigenmode
to changing surface parameters, or more specifically, the sensitivity of the least °
damped wavenumber to surface property variations. -

The accuracy of (5.8) may be determined by a comparison of this method
with a finite difference approximation. The results in Table (5.1) for N = 11 and .

w = 0.25 show good agreement between the finite difference approximation and the

approach of (5.8) for the model problem. S

5.3 Compliant Surface Parameters

The formulation for the sensitivity of the eigenmode to a boundary parameter

may similiarly be applied to the mechanical model representing a compliant surface.
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Table 5.1: Sensitivity of the eigenvalue, &, to the surface parameter, 3, in the

model problem with N=11 and @ = 0.25. ‘:_-\;‘_
e
LS
e
RN
L]
PONN,
RO Ny
R 3 a Numerical F.Diff. Error ':',jf_.'_:.:
1. 1.00 5454 —.8344 x 107! —.8492 x 107! 17 x 1073 PR
0.95 .5496 —.8642 x 107! | —.8645 x 107! | .33 x107° o
0.90 .5540 —.8960 x 107! —.8799 x 10! 18 x 1073 °
100. 1.00 9451 —.2756 x 107! — 2779 x 10°! 12 x 1073 i;f.:;
0.95 .9465 ~.2821 x 107! -.2822 x 107! .16 x 107° e
0.90 | .9479 | —.2800x 10! | —.2855x 107! | .12x 1073 RO
500. | 1.00 | .09953 | —.2194x 107* | —.2195x 107 | .35x 10~° A
0.95 .09954 -.2196 x 1073 ~.2196 x 1073 .34 x 107° )
0.90 .09955 ~.2197 x 1073 -.2197 x 1073 29 x 1075
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Two basic approaches may be formed. The differentiation may be made with respect

to the non-dimensional coefficients or the dimmensional physical properties.

P
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The first approach leads to the following relations
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93 {a’} [@eos*0{d'(-1)}] {a}
9Cp {a*}# [DV(@)] {a}

(5.9a)
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A5 {a}H [@sin®8{5'(-1)}] {a}
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(5.9¢)

o5 {a}* [a{i"(-1)}] {a}
[D{(@)] {a}

8a __ {a}¥ |-a@{#'(-1)}] {a}
9Cm {a+}# (D (@)] {a}

(5.9d)

The second approach may be performed in two ways. Either determine the

values of (5.9) then muitiply the result by an appropriate derivative resulting in

Oa 9C, _ om (5.10)
ac; s  ds’ ‘

where s is the dimensional surface parameter of interest; or differentiate with re-
spect to the dimensional boundary properties explicitly. This approach yields the

following relations

_ {a Y H(@E) (p,U%6°) — (@@ pm)/(p.6 )} (= 1)}] {a} (5.11a)

{a-}¥ [DI(@)] {a}

_— _ _{a'}H T(TSCOSZM’/(PoU,zoé.:;){f"(‘l)}] {a} (5.11b)

{a}# [D{V(@)] {a}
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93 {a}¥ [(@%bsin?0)/(poUL 6" ){i"(~1)}] {a} (5.11c)
oE {a"}¥ DV (3)] {a}

oa _ {a’}¥ [(@8)/(p UL {3 (~1)}] {a} (5.11d)
9K {a"}# [D3"(3)] {a}

da _ _{a*}” [(—a?b) /(o6 ){v'(—-1)}] {a}. (5.11¢)

pm {a=}# DV (@)] {a}

Both approaches should render identical results. The reason for giving both ap-
proaches is to verify the prospect of performing the analysis with the four nondi-
mensional variables as opposed to the five physical variables. Depending on the
scope of the analysis for a given problem using the above differential technique, it
may be more practical to use fewer nondimensional variables if possible.

As with the model, the method is shown to be accurate in comparison to
finite difference approximations. The results are compared in Table (5.2) with
N = 48,w = 0.055, R = 2240, and the surface properties corresponding to the case
where § = 60 of Carpenter and Morris {23|. A comparison showing the influence of
the number of Chebyshev polynomials on the accuracy of the differential is given in
Table (5.3)! Obviously increasing the number of Chebyshev series terms increases
the number of accurate significant digits. To obtain an eigenvalue with two sig-
nificant digits of accuracy 48 polynomials are required. For the sensitivity with a
similiar number of polynomials two significant digits of accuracy are retained. This
may lead one to conclude that the accuracy of the sensitivity measure is related
to the eigenvalue accuracy of interest. So the choice of the number of Chebyshev
polynomials required is based on the desired accuracy of the eigenvalue in question.

Up to this point the tools necessary for the optimization proceaure have been

derived and analyzed. The local eigenvalue refinement method, the eigenvector

determination scheme, and the form. ;a relating the sensitivity of eigenmodes to
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Table 5.3: Variation of the sensitivity of the eigenmode to changes in the boundary

property, B, with the number of Chebyshev polynomials. (B(Nm) = 0.773 x 1077).

N a Numer:da/dB F.Diff..0a/0B
33 .15804017,-.00293839 213.16244,-78.565489 101.4,-80.12
38 .15757249,-.00295601 217.97623,-73.151999 218.0,~74.39
41 .15774825,~.00295831 216.67877,-75.295445 216.0,-76.20
48 .15781629,~-.00313296 215.11468,-74.643011 215.0,-74.72
55 .15781285,-.00314088 214.94787,-74.624582 215.0,~-74.64 E;
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What remains is the introduction of a minimization procedure for muliti-variable
optimization problems and the presentation of a simple property variation approach.

surface property changes may be linked together to complete this investigation.
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CHAPTER 6

OPTIMIZATION OF BOUNDARY PARAMETERS

6.1 Introduction

In the remaining segment of this discussion the importance of the surface prop-
erty changes on boundary layer stabilization will be shown. Numerical techniques
outlined in the previous chapter are utilized to measure the instability growth or

decay depending on the surface property variations.

6.2 Minimization Method and Results

In Chapter 5 a means was developed to determine numerically the sensitivity
of an eigenvalue to surface property changes. Relatively speaking, this may be
considered a gradient. This is verified by a comparison with the finite difference
approximation. These gradient measurements are the desired agents needed for the
optimization algorithm available.

Many algorithms have been proposed for minimizing a function of multi-
variable problems. Gradients are not necessary to obtain the desired results as
is explained by Powell [42]; however, many benefits are found in the use of gradi-
ents. For instance, the relative influence of each property is made evident in the
gradient. In the present investigation, the influence of a property inay be found to
have a dominant effect on the growth or decay of the instability as opposed to a
property having no effect on the instability. This is significant in the present prob-
lem for understanding the relative importance of the sensitivity of TSI and FISI
waves with the surface property changes. The measure of TSI sensitivity was given
in Table (5.2), and the FISI sensitivity measurements are given in Table (6.1). The

TSI sensitivity values are one or two orders of magnitude greater than the FISI
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Table 6.1: Sensitivity of the imaginary part of the wavenumber of FISI to
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values. In theory, the stabilization of one class of instability leads to a destabiliza-
tion of the other class. From the results at present, a means has been developed
to measure the relative stabilizing-destabilizing effect of the two classes of instabil-
ities. This is significant since it indicates the dominant influence of TSI waves in
reference to the choice of compliant surface properties. So the optimization should

be concerned with the stabilization of the more critical TSI waves.

From this comparison, a multi-variable algorithm is sought to minimize the
TSI growth rate. Such an algorithm was made available by Dr. William Hagar of
the Mathematics Department at Penn State. The algorithm is based on the con-
jugate gradient method by Fletcher and Reeves [43]. The code routinely calls the
surface properties, gradients, and least damped wavenumber during the iterations.
Beginning with the properties of Carpenter and Morris for § = 60, iterations are
performed and listed in Table (6.2). For three iterations a stabilization begins to
occur. This trend would continue and lead to a damped wavenumber. For each it-
eration a systematic repetition of property values is observed. This may occur due
to the relative invarience of the sensitivity values. In using this algorithm the prop-
erties must have comparable magnitudes or the iterative process leads to physically
unrealizable values. For example, the flexural rigidity which has a small magnitude
was varied and became negative. This may be avoided by limiting the band of
possible property values available to the algorithm. This is unnecessary at present
since it proves more efficient computationally to use a simple variational approach.
Although exact cpu accounts are unavailable, a relative comparison is possible. The
above method requires appoximately five minutes on the VAX 11/8580 as opposed
to four minutes for the approach that will follow. The above method did confirm
that stabilization is theoretically possible through the appropriate surface property

combinations, but much more useful information is obtained from the
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Table 6.2: Minimization of instability growth rate by the conjugate gradient ap-

proach for B(Nm)=0.773 x 10~7, p,n(kg/m®)=1000, and an initial step of 0.05.

Iteration | b E
(N/mm?)

(N/mm?)

Qy

Initial | .50900

.05900

-.003133

1 .10836 .50835
.50864

.50835

.05559
.05740
.05559

-.002791
-.002946
-.002791

.50806
.50819
.50806

05402
.05472
.05402

-.002622
-.002698
-.002622

50797
.50801
.50797

.05351
05373
.056351

-.002567
-.002592
-.002567
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6.3 Variational Method and Results

For multi-variable problems it is advantageous to fix some variables. The char-
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Table 6.3: Sensitivity of least stable wavenumber of TSI and FISI to changes the

surface properties: B,E, and b with K(N/mm?3)=.059 and pm(kg/m>) = 1000.

v,
o’
<
: B b E TSI FISI
(Nm) (mm) (N/mm?) a; a;
. .743z10~7 1035 6031 -.3731z107% | .1443z107° .
- 74321077 1085 5235 -.3177z107%2 | .1458z1073 -
- .743z1077 1135 4573 -.26372107? | .1472z107° T
- 74321077 1185 14019 ~.2182z107% | .1486z1073 <
A 7432107 | .1235 3550 ~.1699z10-% | .1500z10~% P
76321077 1285 .3236 -.1332z1072 151221073 e
. 7632107 1335 .2886 -.0909z107% | .1526z1073 e
v .763z10~7 1385 .2585 —.04952102 15402103 3';:-',:
- .763x10~7 1435 2324 ~.0106z10~% | .1553z1073 o
Y 7632107 1485 2097 +.0253z102 | .1567z1073 o
¥ 78321077 1535 11948 +.0496z107% | .1579z10~3 S
o 78321077 1585 1770 +.0786z107% | .1592z10~3 s
- 7832107 1635 1612 +.1058z107% | .1606z1073 i
’ 7832107 1685 1473 +.1305z10°2 .1620z10~3 ENON
4 78321077 1735 1349 +.1526210"2 | .16337103 afn
- 80321077 1785 1271 +.16647107% | .1647z1073 S
- .803z10~7 1835 1170 +.1841z1072 .1661z10~3 vt
. .803z10~7 1885 .1079 +.2002z10~2 | .1675z1077 N
- 8032107 1935 .0997 +.214421072 | .1690z10-3 S
4 .803z10~7 | .1985 0924 +.2269z107% | .1705z10~3 s
. 8232107 .2035 .0879 +.2344z107? 1719z1073 N
N .823z107 2085 .0817 +.2448z107? 173421073 s
N 82321077 2135 0761 +.2539z107% | .1749z107? e
: 8232107 2185 0710 +.2618z1072 176521073 R0
- 8232107 2235 0663 +.2688r107% | .1781z1073 )
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Table 6.4: Sensitivity of least stable wave-number of TSI and FISI to changes the

surface properties: B,E, and b with K{N/mm?3)=.059 and pm(kg/m?) = 1000.

B b E TSI FISI
(Nm) (mm) (N/mm?) a, @,
.0743z10°° 1035 .6031 —-.3731z10"2 14437103
07632106 1035 6194 —.3878z1072 14412103
.0783z10¢ 1035 .6356 —.4020z10°? 143921073
.0803z10° 1035 6518 —~.415821072 .1437z10°3
.0823z10~° 1035 .6681 —~.4289zx10~? 14352107
.0843z10° 1085 .5940 —.39172107?2 14482103
.0863z10~¢ 1085 .6081 —.4014210~2 14462103
.0883x10~° 1085 6222 —.4139z107?2 14452103
.0903z10~¢ 1085 6363 —.42622107?2 144371073
09232106 1085 6504 —~.438121072 144121073
.0943z10°° 1135 .5805 —~.4016z10~? 14552103
.0963z10-° 1135 .5928 —.4102z1072 1453107
.0983z10°° 1135 6051 —.4214zx1072 145221073
1003210~ 1135 6174 —.4324z107? 14502103
.1023z10~6 1135 6297 —.44317107? 144871073
.1043z10° 1185 .5641 —.4074z1072 146221073
.1063z10-° 1185 5749 —.4151z1072 14612103
.1083z10° 1185 .5858 —.4253¢1072 .1459z10°3
11032106 1185 .5966 —~.4353r107 72 145721073
.1123z10°° 1185 6074 —.445121072 1456103
.1143z10°° 1235 .5461 —~.4101z107? 14702103
.1163z10~° 1235 .5557 —.4171z1072 146821073
11832106 1235 .5652 —~.4265z1072 146721073
.1203z10° 1235 5748 ~.4357z1072 146521073
12232106 1235 .5843 —.4448z1072 14647103
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68
measurements. A more indepth explanation may be desired to justify that the re-
sults obtained with respect to FISI growth rate invariation are in agreement with
theory. Carpenter and Garrad (18] developed a means to identify curves indicat-
ing expected stable and unstable regions for FISI. These curves are dependent on
the properties of an isotropic surface for the temporal case. If their analysis were
extended to the spatial non-isotropic case, it seems reasonable to expect that “sta-
bility curves” may be determined. The property variation in the present analysis
may ensure that FIS] remains in a neutral or stable region. It may be found that
the destabilization of FISI waves occurring due to an increase in the plate thickness
may be offset by the corresponding stabilization occurring due to an increase in the
flexural rigidity.

The final variation is made with respect to the model swivel-arm angle. Shown
in Figure (6.5) is the effect on the least damped wavenumber for TSI to changes in
the swivel-arm angle for fixed surface properties. These properties correspond to
those given by Carpenter and Morris for § = 60 with R = 2240 and & = 0.055. As
was found with the surface property changes. a stabilization may be realized. This
can primarily be achieved with an angle between 0 and 50. It should be noted that
the isotropic case corresponding to § = 0 has a stabilizing affect on the boundary
layer for these particular surface properties, Reynolds number and frequency. This
concludes the findings discovered through this investigation. Of course, further cases
may be performed, but this example shows the relative importance of the surface
properties on the instability and properties which may lead to a stabilization of the

boundary laver.
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CHAPTER 7
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DISCUSSION AND CONCLUSIONS
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The majority of this thesis has consisted of a description of the problem and

29
. the building of the numerical tools necessary to fulfill the expectations of the inves- .4..\,
Y
: tigation. The technique to determine the sensitivity of the instability with respect -i?.:_
to surface property changes was critical in understanding the importance of each Z‘."_::
d property. This measurement also provided a means to measure the relative influence :‘-’ﬁ
- of the surface properties on both TSI and FISI waves. The minimization algorithm ;}_E.::
. seeks a decreasing gradient as a convergence criterion. In this analysis, however, the EEE:
/ gradients changed very little over the property range of interest. So an algorithm ?«‘
q which travels in a gradient dependent manner is less practical than a simple prop- :\_:
erty variation for the present problem of interest. It also proves computationally ,:._\_,,
more efficient and much more information is gained when the property variation '.}?i
Y
approach is used. In extending the present analysis, the surface properties may *.E:.,‘
be sought which give minimal sensitivity values. If this were attained, one might ),::';:*
expect that with small changes in flow conditions the instability growth rate would ",}_}
essentially remain unchanged. The idea seems plausible but in fact the measure of E:Ef
sensitivity over the range of present property values did not change significantly in '*"::‘" “
magnitude. This may be shown graphically by reviewing the slopes of the curves '.\-*;—7:{
in Figures (6.1)-(6.4). .~
N ".\
. In the final method, the variation approach gives a simple means to attain ';'»‘".xh
stability curves with respect to surface properties. In a more complete sense, for a :v‘
multi-variable problem it is possible to attain “stability planes”. In this investiga- L
tion the range of surface properties centered around the values by Carpenter and
s Morris. If manufacturable surface property combinations were available, it would

"'q "h
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be possible to predict a coating most likely to delay transition. Assuming Kramer'’s
conclusions concerning surface imperfections and water impurities resulting in no
performance loss hold, the predicted performance should be realized if the manu-
factured compliant coating is in accord with the mechanical model representation.

From the results obtained in this investigation, further research may commence
in many directions. Experimentally, a surface may be constructed and tested on
a model. The performance may then be compared with an uncoated model and
the predicted results of the mechanical model. Along a similiar route taken in this
study, the delay to transition may be analyzed for an optimal set of surface prop-
erties over a range of flow conditions. This is an obvious necessity for commercial
considerations. Of course, compliant coatings are not limited to laminar transition
analysis and are also being used in turbulence research. It would be of interest to
determine the desirable compliant coating properties in turbulent flow. These prop-
erties could be compared with the “stability planes” which may be obtained from
the present analysis. Overlap regions may be found which when used in practice
delay transition and perform favorably after the transition to turbulent flow. This

would enhance the performance of a coated vehicle over a range of velocities.
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APPENDIX A
CHEBYSHEV SERIES FORMULAE

The Chebyshev polynomials, T,(z), are defined on the interval z € -1, + 1]

and are derived from and related to the cosine function by

n

v L Y

Tr(cos8) = cosnf,

v

X

with the initial few polynomials appearing as To(z) = 1 Th(z) = =z,

-

oy

A
PR ARY

P d

T2(z) = 222 — 1,T3(z) = 423 - 3z, ect. The following trigonometric identity can be

Ay %y ‘g

v
|’l’ 1
Ports

g
4

obtained.

1.:5
7

N,

(RN
i /‘I LAl

cos(n + 1)8 = 2cos8 - cosnb — cos(n — 1)6 (A.2)

R

ok

This results in a Chebyshev recurrence formula for higher order polynomials.

Trii(z) = 22T (z) — Tn-i(z)

AANDS

LY
A

l"—-
SN

'

The product formula is

< n

.
[ AP )
A v

l‘-‘-'\ .
VAR S S

and the indefinite integral relation is

(z) n=

(To(z) + T2(x)) n =

Toeitz) Tu-i(z)
n+1 n-—1

n >
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The series boundary conditions are

Ta(£1) = (£1)"

and the differential relation for Chebyshev polynomials at the boundaries is

» r- =
~ b
)

> . l,','.'l'; (‘
~
P A

%Tn(il) = (2 )P kI;Io(n? ~ k%)/(2k + 1). (A7)

Another efficient relation useful when performing the summation of a Cheby-

shev series is given by

\r'
s }.
" &

‘. " »

4

[

5 'auTalz) = § boz) — ba(a)] (48

"r_{t,,v’,- 7
I

/

by
AN

where the prime signifies that the leading term is to be halved. The recurrence

1

7

system needed to evaluate (A.8) is

_‘ Je

RO
a_V

® U

bno(z) = 22bni i (L) — bns2(z) + an

A
DRE )

"
.l

.
B
[ ]

. .
3
]

O
® L
e

by +1(z) = bvi2(z) =0.

-
(]
-
B )
«“ss
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A Chebyshev formula useful in approximating a known function in a Chebyshev

r e
s %

series can be defined as

» . L
S \,'o"-’ '.I' Yol

(A.10a)

where ®(z) is a known function at all points in the domain. The coefficients. o, .

are given by
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2 N

_ ~ "

bn = = Y "®(zk) T (k) (A.100)

k=0

with
km

Ir = cosﬁ for k=0,1.2,....N. (A.10¢)

The double prime on the summation signifies that the leading and trailing coeffi-
cients are to be halved. The final Chebyshev property that will be given prior to
listing practical integral formulae is the approximation of the differential of a known

function in Chebyshev series. The derivative is given by

¢'(z) = > _ bnTn(z) (A.lla)
n=0
where
by = = i (A.116
" Cn Par . )
p=n+1l
p+nodd ¢
and
_ 12 n=20
=11 nso (A.11c)

The coefficients, a,, , are obtained from the series approximation to the known
function, o(z).

To obtain the solution of a differential equation by a Chebyshev series approxi-
mation, it is convenient, although not necessary. to convert the differential equation
to an integral form. As such, a function is represented by the following finite,

Chebyshev series.
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(4.12)

IQ‘I

.
e

5
&

3 I

2
7

ratas
P4

By applying the integral relation (A.5) appropriately and repeatedly, the following

relations are obtained.

N+1

L. /¢(1:)d1: = Z " 60 Tn(z)

S
5 l(" L)
+
J o

'.
5
.x}.:ﬁ

s
N8

bn:2_n(an—l_an+l) for n>1

a"’f"n

.
> .
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N+2

2. //¢(a:)da:2 = ZB' bnTp(z)
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3. ///¢(r)dz3 = S bnTn(z)
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b = an-3 _ 3an- n 3an+
" 8n(n-1)(n-2) 8n(n-2)(n+1) 8n(n — 1)(n + 2)
Qn 43

" 8n(n + 1)(n +2)
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for n >3
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where

_ Qn-4 @n-2 + 3an
T16n(n-1)(n-2)(n-3) 4n(n? -1)(n-3) 8(n? —1)(n? -4)
. An+2 An+4 “

- T 33 enmrns Dmy ozt (A6 .
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When the coefficients in the differential equations are non-constant, the Cheby- s

» A
R 4

shev product formula (A.4) is needed. Introducing a function, u(z), representing

’

(ALY

LY

the non-constant coefficient, the following is obtained.
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u(z)(z) = Y _'dnTn(z) (A.17a)
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u(z) = Z "unTn(x) (A.17b) :'f':

n=0 .

and N
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1 1

dy = iunao + 5 Z (Yimen| + Um+n)am for n >0 (A.17¢)

m=1

5,4
PR

0 -"
A ey

S L
# 1]

2y
S

Integrations are performed in a straight forward manner using the integral re-

.
,

lation (A.5). The following integral relations prove useful for the problem presented

»”

in this thesis.

N+1 A
L. /u(z)d)(r)dr = Z "dnTh(z) (A.18a) gp:
n=0

R TLE
where NN
N ,\‘_-.
1 1 RS
dn = —(Un_| ~Up.la.~— \ (Mimnaetl = Umon_q e
in in &~ NN
m=1 -

“Umen | —Umanstl@m for n -1 (.1.18b) .

&

- - . - - - ~
A S I S AN A AL, SIS NN A N NV I P PR P PRI PP - N N RN ’



%

o
o ¥

2
-3
~1
'g"g' o u_‘ .
/s.f;a_/_a_
e r e

x
A

,';,') “

/7S

N+2
2. //u(:z:)(zb(:l:)d:z:2 = Z " dpTn(z) (A.19q)

n=0
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! ?q' J
L where ':‘.:’}
) u u u N u| 21+ U 2 :l' .
h : d. = n-2 _ n + n+2 a. + m-—n+ m+n-— >
, " [Sn(n -1) 4(n2-1) S8n(n+1)] ° Z_l 8n(n — 1) ! ".‘.
- u + U|m— Ujm—n—2 T U Ao
i _mhn |m—n| 4+ ~m=n 2| miny? am for n>2 (A.19a)
y 4(n?2 - 1) 8n(n + 1)
H J - :
f : ::;'.
N+3 ..
.- 3. ///u(z)¢(:v)d:53 =)' dnTu(z) (A.20a) e
: n=0 ::':::'-"
'_: where ::-:* )
' :‘4::: L
¢ d. = Un-3 _ 3un—-l + 3un+l ,.‘
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These integral relations replace the appropriate integral terms in an integral
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equation inorder to obtain a solution. The integral formulae require the order of

LA A,
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the Chebyshev terms to begin with the order of the integral equation. The proof of

this will not be given here, but can be found in [31].
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APPENDIX B

BLASIUS SOLUTION

REPRESENTED BY A CHEBYSHEV SERIES

In this thesis, the solution to the Blasius equation is necessary and is repre-
sented by a Chebyshev series. In order to attain this end, an accurate means of
obtaining a numerical solution is first necessary. In the similarity variables the

governing equation is an ordinary differential equation of the form

f’” + %ffll — 0 (Bl)

where (') = 3‘% and the appropriate boundary conditions are

f(0) = f(0) =0 . lim f'(n) — 1. (B.2)

n—ne

where the derivative of f(n) is the streamwise velocity. Using a shooting-type
method with a 5th-6th order, variable-step Runge-Kutta solver(IMSL:DVERK) .
the initial condition satisfying the streamwise velocity limit can be found. This

results in

f"(0) = 0.3320573362185815 . (B.3)

The discrete points desired in the Chebyshev domain. z = /~1. + 1], are trans-

formed to the Blasius variable. n = '0.oc). via the algebraic transformation

n=L-(1+y):(1-y) (B.4)
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~ y=yRex" (B.5)
.
where y is the physical coordinate with domain [0,00). The solution obtained at
- the desired points are then transformed back to the computational domain using
: the inverse of (B.4). Taking the solution of a function(i.e., the Blasius solution), .j'»..:,-::‘
SN
F(z), given at all points in z € [~ 1, + 1], a Chebyshev expansion of such is sought. ®
. :_'ij'-
X o
. ~ o).
Y ’ \f\f
= 2z . N
: F(2) Z_j) [nTl2) (B6) ;~:~£§
n= -! .,
] . . . oo RN,
\ The prime signifies that the leading term of the series is to be halved. An exact R
g solution is obtained for NV — oo. For a series expansion, the function must be ,:Z: _‘
evaluated at the Chebyshev points ;-‘
P
NN
l.’I.’I
z = cos(mi/N) 1=0,1.2,.,N . (B.7) RS
AN
4
. . . el
The series at these points is NN
AN
- ‘1’..-.\1
4 RN
‘ N ':‘:-:.‘:
F(z:) =Y 'fuTa(z) - (B .8 [
- n=0
Using the relationship between the Chebyshev poiynomial and the cosine function.
y a curve-fitting formula can be obtained. Thus, the coefficients can be compite: ‘.
X using
: 5 N
Y fn: '\Tzllf(:z)’l"rt:'} ®
.
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81
where the double prime signifies that the leading and trailing terms of the series

are to be halved. With the identity

Tn(z) = cos(mni/N) (B.10)

oy

the desired form of the curve-fitting formula is obtained. Making a substitution of Z":.,

s S

[ )
-

(B.10) into (B.9), the following results

. AN
) | S

fn = 5 Z"f(z,)cos(ﬂm/N) . (B.11) NN
N &~ P
% N

Zara

By making use of (B.11) with (B.6), the Chebyshev series representation of a func-
tion can be computed to a desired accuracy by taking N to be large.

The solution of the Blasius equation represented by a Chebyshev series is at-

tained with this curve-fitting formula. Sufficient accuracy was attained using an
approximation with an order of N = 99. The solution given in the computational

domain is shown in Figure (3.1) in Chapter 3.
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